SMOLSolver: Lightweight Generator—Verifier Framework
for Step-by-Step Math Problem Solving

Akshat Singh Zhuwei Xu

Shiyue Zhang Raj Trikha

Nishant Sharma

New York University
{as20255, zx2188, sz5331, rt2932, ns6287}@nyu.edu

Abstract

This intermediate report presents ongoing work
on SMOLSolver, a lightweight two-model
framework for step-by-step arithmetic problem
solving. The system combines a Generator,
which produces detailed, multi-step solution
traces for mathematical problems and a Ver-
ifier, which evaluates each reasoning step to
enable future iterative refinement. Both mod-
els are small language models fine-tuned on
standard math-reasoning datasets. The project
aims to study how verifier-guided feedback can
enhance reasoning consistency and numeric ac-
curacy without relying on large model sizes.
We summarize fine-tuning progress for both
components, initial results, and the next steps
toward integrated inference with the feedback
loops.

1 Introduction

SMOLSolver aims to develop an efficient, modular
math-solving system composed of two indepen-
dently tuned components:

* Generator: Produces detailed, multi-step rea-
soning traces for arithmetic problems, break-
ing down the solution into interpretable steps.

* Verifier: Assesses the logical and numerical
correctness of each step and provides targeted
textual feedback for iterative refinement.

The system targets the GSM8K dataset and similar
reasoning benchmarks while remaining lightweight
enough for single-GPU fine-tuning.

1.1 Motivation

Large models achieve strong reasoning ability but
require high compute and memory [Lightman et al.,
2023]. This project investigates whether smaller
models (< 3B parameters) can approximate such
performance through dataset-specific LoRA fine-
tuning and modular design.

2 Literature Review

Recent advancements in mathematical reason-
ing have increasingly focused on process supervi-
sion over outcome-only evaluation. While large
models demonstrate high performance, a paral-
lel line of research has confirmed the capabilities
of small language models (SLMs). Projects like
Instella-Math and Arithmo?2 show that SLMs can
achieve strong results on benchmarks like GSM8K,
especially when combined with parameter-efficient
fine-tuning (PEFT) methods. Techniques such
as QLoRA, in particular, have shown near full-
finetuning performance on these tasks [Dettmers
et al., 2023], validating our project’s foundational
use of lightweight models.

Our SMOLSolver framework builds on this
foundation by exploring a modular, verifier-guided
architecture as a compute-efficient alternative to
large-scale, monolithic training. This approach is
contextualized by recent work on feedback-driven
refinement. For instance, StepCo [Wu et al., 2025]
introduces stepwise correction signals to iteratively
refine answers, and SIPF [Chen et al., 2025] pro-
poses structured feedback injection specifically for
small models. Both studies demonstrate measur-
able accuracy gains using just a single feedback
loop, which directly motivates our project’s core
design: a "one-shot" correction pipeline where a
dedicated verifier model guides the generator to
improve reasoning.

3 Methodology

We propose SMOLSolver, a lightweight dual-
model framework designed to enhance mathemat-
ical reasoning in small language models through
collaborative verification. The system consists of
a Generator (Phi-2, 2.7B) that produces step-by-
step reasoning chains, and a Verifier (TinyLLaMA,
1.1B) that evaluates the correctness of each rea-

soning step. We fine-tune both models indepen-
dently using parameter-efficient methods: the Gen-
erator on GSMS8K solution data and the Verifier
on PRMS800K step-level labels. The integration of
these components into a self-correcting feedback
loop is planned as future work.

3.1 System Overview

SMOLSolver uses a three-stage pipeline: Genera-
tion, Verification, and Refinement. Given a problem
q, the Generator produces a step-by-step solution
r = G(q). The Verifier then outputs step-level cor-
rectness labels v = V (g,), which will be fed back
to the Generator to produce a corrected solution.
The Generator is trained on GSM8K and the Veri-
fier on PRMB800K, allowing for modular training
and sequential inference.

3.2 Generator Module

The Generator is a Phi-2 (2.7B) model fine-tuned
on the GSMS8K dataset using QLoRA (4-bit quan-
tization). It is trained to produce numbered reason-
ing steps ending with “FINAL_ANSWER: <number>"
for parsability. We use instruction fine-tuning with
prompt masking (loss on response tokens only)
and apply LoRA (rank=16) to attention layers for
parameter-efficient training.

3.3 Verifier Module

The Verifier, a TinyLLaMA (1.1B) model, classi-
fies reasoning steps as wrong, unclear, or correct.
It is fine-tuned using LoRA on the PRM800K
dataset, which provides step-level correctness
scores {—1,0,1}. We use a two-phase pipeline:
Phase 1 trains on simple, short-context examples
to learn basic label mapping. Phase 2 continues
training on longer, more complex reasoning chains
to refine its ability to evaluate multi-step deduc-
tions. LoRA is applied throughout both phases for
efficiency.

4 Experiments and Results

4.1 Generator Fine-Tuning
4.1.1 Setup
* Model: microsoft/phi-2 (2.7B parameters)

* Method: QLoRA (4-bit quantization, fp16)

* Objective: Generate structured step-by-
step mathematical reasoning with explicit
FINAL_ANSWER: delimiter for parseable nu-
meric outputs.

* LoRA Config: rank=16, a=16, dropout=0.1

* Target Modules: q_proj, k_proj, v_proj,
o_proj Cosine learning rate schedule with
3% warmup for stable convergence across 2
epochs.

* Hyperparameters: Epochs=2, Batch
Size=32 (effective), LR=1 x 1074, Max
Length=1024 tokens, Precision=FP16

4.1.2 Results

Pass@1 Accuracy: Proportion of prob-
lems solved correctly with single deter-
ministic solution (temperature=0).

Format Compliance: Percentage
of outputs with valid parseable
FINAL_ANSWER: line.

Metric Result
Pass@1 Accuracy 64.06%
Correct / Total 476 /743
Format Compliance 99.33%
Validation Loss (final) 0.486

Trainable Params 7.86M (0.28%)

Table 1: Generator performance on GSM8K validation
(748 examples).

The generator achieved 64.06% Pass@1 accuracy,
substantially outperforming zero-shot Phi-2 and
competitive with GPT-3.5 (~57%). Majority@5
sampling improved accuracy by +3.05%, indicat-
ing the model frequently produces correct answers
but benefits from reasoning diversity. Near-perfect
format compliance (99.33%) confirms reliable tem-
plate learning. Ablation studies showed increasing
LoRA rank to r = 32 yielded no improvement
(64.46%), indicating performance is limited by rea-
soning quality rather than capacity.

4.1.3 Example

Question: Mimi picked up 2 dozen seashells. Kyle found
twice as many. Leigh grabbed one-third of Kyle’s shells.
How many did Leigh have?

Generated:
1) Mimi has 2 x 12 = 24 shells.
2) Kyle has 2 x 24 = 48 shells.

3) Leigh has 48 / 3 = 16 shells.
FINAL_ANSWER: 16

Ground Truth: 16

4.2 Verifier Fine-Tuning

4.2.1 Setup

* Model:
Chat-v1.0

TinyLlama/TinyLlama-1.1B-

* Method: LoRA fine-tuning (8-bit, fp16)

* Objective: Multi-class classifi-
cation of reasoning step validity
(wrong/unclear/correct) based on gener-
ated step-by-step solutions.

* Hyperparameters: Epochs=2, Batch Size=1,
LR=1 x 10~°, Max Length=512 tokens

4.2.2 Results

Accuracy: The proportion of reason-
ing steps whose predicted validity label
(wrong/unclear/correct) matches the
human-annotated ground truth.

Macro F1: To balance label imbalance
and evaluate overall step consistency.

Evaluation Loss: Cross-entropy loss on
the held-out test set.

Phase Accuracy F1 (macro) Eval Loss
Phase 1 0.8791 0.3119 0.4293
Phase 2 0.8249 0.3060 0.7253

Table 2: TinyLlama verifier performance across two
fine-tuning phases.

The verifier achieved strong verdict alignment,
showing that it reliably distinguishes correct, un-
certain, and erroneous reasoning patterns. Perfor-
mance slightly declined in Phase 2 due to increased
reasoning length and complexity.

4.2.3 Example

Step Verification

=== Step Verification ===

Mimi has 24 shells. -+ correct
Kyle has 48. -+ correct
Leigh has 48/3 = 16. -+ correct
Answer: 16. -+ correct

4.2.4 Alternative Model Exploration (Phi-2)

In addition to the TinyLlama model, the team also
explored microsoft/phi-2 as a verifier backbone.
These experiments used QLoRA and tested various
configurations, including LoRA ranks (r=16 and
r=64) and data sizes (10% and 20% samples).

This exploration found that the phi-2 verifier con-
sistently achieved a stable evaluation accuracy of
~81.5% (eval_mean_token_accuracy). While
increasing LoRA capacity and data size improved
training accuracy up to 84.8%, it did not signifi-
cantly improve the final validation accuracy over
the baseline. This performance was notably lower

than the TinyLlama’s 87.9% accuracy, reinforcing
the choice to proceed with TinyLlama as the pri-
mary verifier model.

5 Current Progress

The project is a team effort, with responsibilities
divided by component. The Generator module,
including all fine-tuning on the GSM8K dataset and
subsequent analysis, is managed by Akshat Singh,
Zhuwei Xu, and Raj Trikha. The Verifier module,
which involves data processing of the PRM800OK
dataset and fine-tuning experiments, is managed
by Shiyue Zhang and Nishant Sharma. This report
presents the individual tuning results from both sub-
teams. The final milestone will involve all members
collaborating to integrate these two components
into a unified feedback loop.

The next and final planned milestone is the Joint
inference evaluation, where the best-performing
Generator and Verifier models will be integrated to
assess the accuracy improvements from the feed-
back loop.

6 Future Plan

The next stage integrates the generator and verifier
for automated inference. The verifier’s feedback
will determine whether generator outputs are ac-
cepted or flagged for re-generation. We also plan
to compare Phi-2 and Phi-3-Mini verifier back-
bones for trade-offs between accuracy and com-
pute.

References

Kaiyuan Chen, Jin Wang, and Xuejie Zhang. 2025.
Learning to reason via self-iterative process feedback
for small language models. In Proceedings of the 30th
International Conference on Computational Linguistics
(COLING), pages 2369-2383.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning of
quantized llms. arXiv preprint arXiv:2305.14314.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike, John
Schulman, Ilya Sutskever, and Karl Cobbe. 2023. Let’s
verify step by step. arXiv preprint arXiv:2305.20050.

Zhenyu Wu, Qingkai Zeng, Zhihan Zhang, Zhaoxuan
Tan, Chao Shen, and Meng Jiang. 2025. Enhancing
mathematical reasoning in llms by stepwise correction.
In Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (ACL), pages
18845-18861.

https://aclanthology.org/2025.coling-main.203.pdf
https://aclanthology.org/2025.coling-main.203.pdf
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2305.14314
https://aclanthology.org/2025.acl-long.1048.pdf
https://aclanthology.org/2025.acl-long.1048.pdf

	Introduction
	Motivation

	Literature Review
	Methodology
	System Overview
	Generator Module
	Verifier Module

	Experiments and Results
	Generator Fine-Tuning
	Setup
	Results
	Example

	Verifier Fine-Tuning
	Setup
	Results
	Example
	Alternative Model Exploration (Phi-2)

	Current Progress
	Current Progress & Next Steps
	Future Plan

